Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study
نویسندگان
چکیده
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.
منابع مشابه
A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage
Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the...
متن کاملInternational Workshop on Mechanics of Energy Materials ( IWMEM 2016 )
This study develops a novel composite phase change material (PCM) based onparaffin/hydrophobic expanded perlite and exfoliated graphene nanoplatelets as heat transferpromoter. The experimental analysis was systematically carried out on fabrication,characterization and testing the thermal storage properties of composite PCM. The micro-morphology characteristics of composite PCM s...
متن کاملPreparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior
Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more...
متن کاملEnergy efficiency in a building complex through seasonal storage of thermal energy in a confined aquifer
Confined aquifers are formations surrounded by impermeable layers called cap rocks and bed rocks. These aquifers are suitable for the seasonal storage of thermal energy. A confined aquifer was designed to meet the cooling and heating energy needs of a residential building complex located in Tehran, Iran. The annual cooling and heating energy needs of the buildings were estimated to be 8.7...
متن کاملParametric Analysis to Study the Influence of Aerogel-Based Renders’ Components on Thermal and Mechanical Performance
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type...
متن کامل